OCaml: Higher-Order
Functions

Programming Languages
William Killian
Millersville University




Outline

* Higher-Order Functions
* Definition
* Anonymous Functions

* Bonus: Bindings <==> Anonymous Functions



Higher Order Functions (HOFs)

 Functions that either
e Accept one (or more) functions as parameters
e Return a function as a result

* Functions accepting functions as parameters?
* Functions returning functions?




Why Use Higher-Order Functions?

* Composition
* We can first create smaller functions that solve simple
problems

* Then we can compose them together to solve complex
problems

* Reduces bugs
* Improves readability
* Enables generic programming / reuse



Example: map

We have already written one HOF: map

let rec map ¥ 1 =
match 1 with

| [T -> []
| h::t -> (f h)::(map f 1)

f : 'a ->'b
1 . 'a list
returns : 'b list



Without map...

let rec map float of int 1 =
match 1 with
| [1 ->1[]
| h::t ->
(float of int h)::(map_float of int 1)

let rec map_string of float 1 =
match 1 with

(string of float h)::(map_string of float 1)



With map...

let rec map ¥ 1 =
match 1 with

| [T -> [1]
| h::t -> (f h)::(map f 1)

let map float of int 1 =
map float of int 1

let map_string of float 1 =
map string of float 1



A More Complex Example

Given a list of integers, | want to:
1. Convert them to a float

2. Then convert the floats to a string

Essentially:

data - float of int - string of float

[1;2;3] > [1.0;2.9;3.0] > ["1.0";"2.0";"3.0"]



A More Complex Example

let complex 1 =

map string of float (map float of int 1)

let complex 1 =

map (fun x -> string of float (float of int x))

* Both are equivalent in what they do
* The top must call map twice

* The bottom must call map only once

data = float of _int - string of float



fun —a function by no-name

We usually write bindings as:
let add = +
But we can write:
let add = fun -> X +

fun is used to indicate that we have a function
e But this function has no name.

* This is called an anonymous (or lambda) function



Revisiting the Complex Example

let complex 1 =

map string of float (map float of int 1)

let complex 1 =

map (fun x -> string of float (float of int x))

Now if only we could get rid of some of these parens...

Remember, we want to emulate the following:

data = float of _int - string of float



Revisiting the Complex Example

Now if only we could get rid of some of these parens...

let complex 1 =
|> map float of int
|> map string of float

let complex

map
(fun x -> float_of _int x |> string of float)



The Pipeline Operator |>

* Probably one of the coolest functions ever(?)

» Super short definition:
let (|>) a f = f a

e Swaps the position of the first argument with the
function name. This is known as a “data-first”
pattern

* This means the function’s first argument comes
before the |> operator

e Evaluation now “in-order” left-to-right



The Pipeline Operator in Use

[-1.2; 1.0; ©0.5; 3.5; -5.5; 0.75; 4.2; 0.31]

let magic

List

List
List

vV VvV VvV VvV V

List.
.filter (fun x -> x <= 1.0)
List.
List.

(l:float list) =1
filter (fun x -> x >= 0.0)

map (fun x -> x *, 100.0)
map int of float

.map string of int

.map (fun x -> x ~ " ")

(* string concatenation *)

|> List.

fold_left (~) ""



The Pipeline Operator not in Use

[-1.2; 1.0; ©0.5; 3.5; -5.5; 0.75; 4.2; 0.31]

let magic (l:float list) =1
List.fold left (~) ""
(List.map (fun x -> x ~ " ")
(List.map string of int
(List.map int of float
(List.map (fun x -> x * 100.0)
(List.filter (fun x -> x <= 1.0)
(List.filter (fun x -> x >= 0.0)

1))))))



Revisiting (Local) Bindings

let x = e in expr
can be rewritten as:
(fun x -> expr) (e)

In fact, it’s what the interpreter does!
let x = 5 in
let y = x * 2 in

X + Y



Revisiting Local Bindings - Trace

let X

let X

(fun

(fun

(fun

(fun

5 in let y

->

->

->

X ¥ 2 1in X + vy

in |let y

X ¥ 21n X + y

let vy

X ¥21n X + y

let |y

(fun

y

¥ 2 in|X + y

->

) (5)
) (5)

X +Yy

) (x ¥

2)) (5)

-> (fun y -> x + vy) (x * 2)) (5)



