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the initial version of which appeared in 1960. It probably still is the most com-
monly used language for these applications. Business languages are character-
ized by facilities for producing elaborate reports, precise ways of describing and
storing decimal numbers and character data, and the ability to specify decimal
arithmetic operations.

There have been few developments in business application languages out-
side the development and evolution of COBOL. Therefore, this book includes
only limited discussions of the structures in COBOL.

Artificial Intelligence

Artificial intelligence (Al) is a broad area of computer applications characterized
by the use of symbolic rather than numeric computations. Symbolic computation
means that symbols, consisting of names rather than numbers, are manipulated.
Also, symbolic computation is more conveniently done with linked lists of data
rather than arrays. This kind of programming sometimes requires more flexi-
bility than other programming domains. For example, in some Al applications
the ability to create and execute code segments during execution is convenient.

The first widely used programming language developed for Al applications
was the functional language Lisp (McCarthy et al., 1965), which appeared in
1959. Most Al applications developed prior to 1990 were written in Lisp or one
of its close relatives. During the early 1970s, however, an alternative approach
to some of these applications appeared—logic programming using the Prolog
(Clocksin and Mellish, 2013) language. More recently, some Al applications
have been written in systems languages such as C. Scheme (Dybvig, 2009), a
dialect of Lisp, and Prolog are introduced in Chapters 15 and 16, respectively.

Web Software

The World Wide Web is supported by an eclectic collection of languages, rang-
ing from markup languages, such as HT ML, which is not a programming lan-
guage, to general-purpose programming languages, such as Java. Because of the
pervasive need for dynamic Web content, some computation capability is often
included in the technology of content presentation. This functionality can be
provided by embedding programming code in an HTML document. Such code
is often in the form of a scripting language, such as JavaScript or PHP (Tatroe,
2013). There are also some markup-like languages that have been extended to
include constructs that control document processing, which are discussed in
Section 1.5 and in Chapter 2.

1.3 Language Evaluation Criteria

As noted previously, the purpose of this book is to examine carefully the under-
lying concepts of the various constructs and capabilities of programming lan-
guages. We will also evaluate these features, focusing on their impact on the
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software development process, including maintenance. To do this, we need a set
of evaluation criteria. Such a list of criteria is necessarily controversial, because
it is difficult to get even two computer scientists to agree on the value of some
given language characteristic relative to others. In spite of these differences,
most would agree that the criteria discussed in the following subsections are
important.

Some of the characteristics that influence three of the four most important
of these criteria are shown in Table 1.1, and the criteria themselves are discussed
in the following sections.” Note that only the most important characteristics
are included in the table, mirroring the discussion in the following subsections.
One could probably make the case that if one considered less important char-
acteristics, virtually all table positions could include “bullets.”

Note that some of these characteristics are broad and somewhat vague,
such as writability, whereas others are specific language constructs, such as
exception handling. Furthermore, although the discussion might seem to imply
that the criteria have equal importance, that implication is not intended, and
it is clearly not the case.

Readability

One of the most important criteria for judging a programming language is the
ease with which programs can be read and understood. Before 1970, software
development was largely thought of in terms of writing code. The primary
positive characteristic of programming languages was efficiency. Language
constructs were designed more from the point of view of the computer than
of the computer users. In the 1970s, however, the software life-cycle concept
(Booch, 1987) was developed; coding was relegated to a much smaller role,

Table 1.1 Language evaluation criteria and the characteristics that affect them

CRITERIA
Characteristic READABILITY WRITABILITY RELIABILITY
Simplicity o J o
Orthogonality . . o
Data types . o o
Syntax design . . o
Support for abstraction . o
Expressivity o ]
"Type checking .
Exception handling J
Restricted aliasing .

2. The fourth primary criterion is cost, which is not included in the table because it is only
slightly related to the other criteria and the characteristics that influence them.
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and maintenance was recognized as a major part of the cycle, particularly in
terms of cost. Because ease of maintenance is determined in large part by the
readability of programs, readability became an important measure of the quality
of programs and programming languages. This was an important juncture in
the evolution of programming languages. There was a distinct crossover from
a focus on machine orientation to a focus on human orientation.

Readability must be considered in the context of the problem domain. For
example, if a program that describes a computation is written in a language not
designed for such use, the program may be unnatural and convoluted, making
it unusually difficult to read.

The following subsections describe characteristics that contribute to the
readability of a programming language.

1.3.1.1 Overall Simplicity

The overall simplicity of a programming language strongly affects its readabil-
ity. A language with a large number of basic constructs is more difficult to learn
than one with a smaller number. Programmers who must use a large language
often learn a subset of the language and ignore its other features. This learning
pattern is sometimes used to excuse the large number of language constructs,
but that argument is not valid. Readability problems occur whenever the pro-
gram’s author has learned a different subset from that subset with which the
reader is familiar.

A second complicating characteristic of a programming language is feature
multiplicity—that is, having more than one way to accomplish a particular
operation. For example, in Java, a user can increment a simple integer variable
in four different ways:

count = count + 1
count += 1
count++

++count

Although the last two statements have slightly different meanings from each
other and from the others in some contexts, all of them have the same mean-
ing when used as stand-alone expressions. These variations are discussed in
Chapter 7.

A third potential problem is operator overloading, in which a single oper-
ator symbol has more than one meaning. Although this is often useful, it can
lead to reduced readability if users are allowed to create their own overloading
and do not do it sensibly. For example, it is clearly acceptable to overload +
to use it for both integer and floating-point addition. In fact, this overloading
simplifies a language by reducing the number of operators. However, suppose
the programmer defined + used between single-dimensioned array operands
to mean the sum of all elements of both arrays. Because the usual meaning of
vector addition is quite different from this, this unusual meaning could confuse



1.3 Language Evaluation Criteria 33

both the author and the program’s readers. An even more extreme example of
program confusion would be a user defining + between two vector operands
to mean the difference between their respective first elements. Operator over-
loading is further discussed in Chapter 7.

Simplicity in languages can, of course, be carried too far. For example,
the form and meaning of most assembly language statements are models of
simplicity, as you can see when you consider the statements that appear in the
next section. This very simplicity, however, makes assembly language programs
less readable. Because they lack more complex control statements, program
structure is less obvious; because the statements are simple, far more of them
are required than in equivalent programs in a high-level language. These same
arguments apply to the less extreme case of high-level languages with inade-
quate control and data-structuring constructs.

1.3.1.2 Orthogonality

Orthogonality in a programming language means that a relatively small set
of primitive constructs can be combined in a relatively small number of ways
to build the control and data structures of the language. Furthermore, every
possible combination of primitives is legal and meaningful. For example, con-
sider data types. Suppose a language has four primitive data types (integer, float,
double, and character) and two type operators (array and pointer). If the two
type operators can be applied to themselves and the four primitive data types,
a large number of data structures can be defined.

The meaning of an orthogonal language feature is independent of the
context of its appearance in a program. (The word orthogonal comes from the
mathematical concept of orthogonal vectors, which are independent of each
other.) Orthogonality follows from a symmetry of relationships among prim-
itives. A lack of orthogonality leads to exceptions to the rules of the language.
For example, in a programming language that supports pointers, it should be
possible to define a pointer to point to any specific type defined in the language.
However, if pointers are not allowed to point to arrays, many potentially useful
user-defined data structures cannot be defined.

We can illustrate the use of orthogonality as a design concept by compar-
ing one aspect of the assembly languages of the IBM mainframe computers
and the VAX series of minicomputers. We consider a single simple situation:
adding two 32-bit integer values that reside in either memory or registers and
replacing one of the two values with the sum. The IBM mainframes have two
instructions for this purpose, which have the forms

A Regl, memory_cell
AR Regl, Reg2

where Regl and Reg2 represent registers. The semantics of these are

Regl <« contents(Regl) + contents (memory_cell)
Regl <« contents(Regl) + contents (Reg2)
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The VAX addition instruction for 32-bit integer values is
ADDL operand_1, operand_?2
whose semantics is
operand_2 < contents (operand_1l) + contents (operand_2)

In this case, either operand can be a register or a memory cell.

The VAX instruction design is orthogonal in that a single instruction can
use either registers or memory cells as the operands. There are two ways to
specify operands, which can be combined in all possible ways. The IBM design
is not orthogonal. Only two out of four operand combinations possibilities are
legal, and the two require different instructions, A and ar. The IBM design is
more restricted and therefore less writable. For example, you cannot add two
values and store the sum in a memory location. Furthermore, the IBM design is
more difficult to learn because of the restrictions and the additional instruction.

Orthogonality is closely related to simplicity: The more orthogonal the
design of a language, the fewer exceptions the language rules require. Fewer
exceptions mean a higher degree of regularity in the design, which makes the
language easier to learn, read, and understand. Anyone who has learned a sig-
nificant part of the English language can testify to the difficulty of learning its
many rule exceptions (for example, 7 before ¢ except after ¢).

As examples of the lack of orthogonality in a high-level language, consider
the following rules and exceptions in C. Although C has two kinds of struc-
tured data types, arrays and records (structs), records can be returned from
functions but arrays cannot. A member of a structure can be any data type
except void or a structure of the same type. An array element can be any data
type except void or a function. Parameters are passed by value, unless they
are arrays, in which case they are, in effect, passed by reference (because the
appearance of an array name without a subscript in a C program is interpreted
to be the address of the array’s first element).

As an example of context dependence, consider the C expression

a + b

"This expression often means that the values of a and b are fetched and added
together. However, if a happens to be a pointer and b is an integer, it affects
the value of b. For example, if a points to a float value that occupies four bytes,
then the value of b must be scaled—in this case multiplied by 4—before it is
added to a. Therefore, the type of a affects the treatment of the value of b. The
context of b affects its meaning.

Too much orthogonality can also cause problems. Perhaps the most
orthogonal programming language is ALGOL 68 (van Wijngaarden et al.,
1969). Every language construct in ALGOL 68 has a type, and there are no
restrictions on those types. In addition, most constructs produce values. This
combinational freedom allows extremely complex constructs. For example, a
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conditional can appear as the left side of an assignment, along with declarations
and other assorted statements, as long as the result is an address. This extreme
form of orthogonality leads to unnecessary complexity. Furthermore, because
languages require a large number of primitives, a high degree of orthogonality
results in an explosion of combinations. So, even if the combinations are simple,
their sheer numbers lead to complexity.

Simplicity in a language, therefore, is at least in part the result of a combi-
nation of a relatively small number of primitive constructs and a limited use of
the concept of orthogonality.

Some believe that functional languages offer a good combination of simplic-
ity and orthogonality. A functional language, such as Lisp, is one in which compu-
tations are made primarily by applying functions to given parameters. In contrast,
in imperative languages such as C, C++, and Java, computations are usually speci-
fied with variables and assignment statements. Functional languages offer poten-
tially the greatest overall simplicity, because they can accomplish everything with
a single construct, the function call, which can be combined simply with other
function calls. This simple elegance is the reason why some language researchers
are attracted to functional languages as the primary alternative to complex non-
functional languages such as Java. Other factors, such as efficiency, however, have
prevented functional languages from becoming more widely used.

1.3.1.3 Data Types

The presence of adequate facilities for defining data types and data structures
in a language is another significant aid to readability. For example, suppose a
numeric type is used for an indicator flag because there is no Boolean type in
the language. In such a language, we might have an assignment such as the
following:

timeOut = 1

The meaning of this statement is unclear, whereas in a language that includes
Boolean types, we would have the following:

timeOut = true

The meaning of this statement is perfectly clear.

1.3.1.4 Syntax Design

The syntax, or form, of the elements of a language has a significant effect on
the readability of programs. Following are some examples of syntactic design
choices that affect readability:

* Special words. Program appearance and thus program readability are
strongly influenced by the forms of a language’s special words (for example,
while, class, and for). Especially important is the method of forming
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compound statements, or statement groups, primarily in control constructs.
Some languages have used matching pairs of special words or symbols to
form groups. C and its descendants use braces to specify compound state-
ments. All of these languages have diminished readability because state-
ment groups are always terminated in the same way, which makes it difficult
to determine which group is being ended when an end or a right brace
appears. Fortran 95 and Ada (ISO/IEC, 2014) make this clearer by using a
distinct closing syntax for each type of statement group. For example, Ada
uses end if to terminate a selection construct and end loop to terminate
a loop construct. This is an example of the conflict between simplicity that
results in fewer reserved words, as in Java, and the greater readability that
can result from using more reserved words, as in Ada.

Another important issue is whether the special words of a language can
be used as names for program variables. If so, the resulting programs can
be very confusing. For example, in Fortran 95, special words, such as bo
and End, are legal variable names, so the appearance of these words in a
program may or may not connote something special.

o Form and meaning. Designing statements so that their appearance at least
partially indicates their purpose is an obvious aid to readability. Semantics,
or meaning, should follow directly from syntax, or form. In some cases, this
principle is violated by two language constructs that are identical or similar
in appearance but have different meanings, depending perhaps on context.
In C, for example, the meaning of the reserved word static depends on
the context of its appearance. If used on the definition of a variable inside
a function, it means the variable is created at compile time. If used on the
definition of a variable that is outside all functions, it means the variable
is visible only in the file in which its definition appears; that is, it is not
exported from that file.

One of the primary complaints about the shell commands of UNIX
(Robbins, 2005) is that their appearance does not always suggest their
function. For example, the meaning of the UNIX command grep can be
deciphered only through prior knowledge, or perhaps cleverness and famil-
iarity with the UNIX editor, ed. The appearance of grep connotes nothing
to UNIX beginners. (In ed, the command /regular_expression/ searches for a
substring that matches the regular expression. Preceding this with g makes
it a global command, specifying that the scope of the search is the whole
file being edited. Following the command with p specifies that lines with
the matching substring are to be printed. So g/regular_expression/p, which
can obviously be abbreviated as grep, prints all lines in a file that contain
substrings that match the regular expression.)

1.3.2 Writability

Writability is a measure of how easily a language can be used to create programs
for a chosen problem domain. Most of the language characteristics that affect
readability also affect writability. This follows directly from the fact that the
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process of writing a program requires the programmer frequently to reread the
part of the program that is already written.

As is the case with readability, writability must be considered in the context
of the target problem domain of a language. It simply is not fair to compare
the writability of two languages in the realm of a particular application when
one was designed for that application and the other was not. For example, the
writabilities of Visual BASIC (VB) (Halvorson, 2013) and C are dramatically
different for creating a program that has a graphical user interface (GUI), for
which VB is ideal. Their writabilities are also quite different for writing systems
programs, such as an operation system, for which C was designed.

The following subsections describe the most important characteristics
influencing the writability of a language.

1.3.2.1 Simplicity and Orthogonality

If a language has a large number of different constructs, some programmers
might not be familiar with all of them. This situation can lead to a misuse of
some features and a disuse of others that may be either more elegant or more
efficient, or both, than those that are used. It may even be possible, as noted
by Hoare (1973), to use unknown features accidentally, with bizarre results.
Therefore, a smaller number of primitive constructs and a consistent set of
rules for combining them (that is, orthogonality) is much better than simply
having a large number of primitives. A programmer can design a solution to a
complex problem after learning only a simple set of primitive constructs.

On the other hand, too much orthogonality can be a detriment to writ-
ability. Errors in programs can go undetected when nearly any combination of
primitives is legal. This can lead to code absurdities that cannot be discovered
by the compiler.

1.3.2.2 Expressivity

Expressivity in a language can refer to several different characteristics. In a lan-
guage such as APL (Gilman and Rose, 1983), it means that there are very pow-
erful operators that allow a great deal of computation to be accomplished with a
very small program. More commonly, it means that a language has relatively con-
venient, rather than cumbersome, ways of specifying computations. For example,
in C, the notation count++ is more convenient and shorter than count =
count + 1.Also, the and then Boolean operator in Ada is a convenient way of
specifying short-circuit evaluation of a Boolean expression. The inclusion of the
for statement in Java makes writing counting loops easier than with the use of
while, which is also possible. All of these increase the writability of a language.

Reliability

A program is said to be reliable if it performs to its specifications under all
conditions. The following subsections describe several language features that
have a significant effect on the reliability of programs in a given language.
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1.3.3.1 Type Checking

Type checking is simply testing for type errors in a given program, either
by the compiler or during program execution. Type checking is an import-
ant factor in language reliability. Because run-time type checking is expensive,
compile-time type checking is more desirable. Furthermore, the earlier errors
in programs are detected, the less expensive it is to make the required repairs.
The design of Java requires checks of the types of nearly all variables and
expressions at compile time. This virtually eliminates type errors at run time
in Java programs. Types and type checking are discussed in depth in Chapter 6.

One example of how failure to type check, at either compile time or run
time, has led to countless program errors is the use of subprogram parameters
in the original C language (Kernighan and Ritchie, 1978). In this language, the
type of an actual parameter in a function call was not checked to determine
whether its type matched that of the corresponding formal parameter in the
function. An int type variable could be used as an actual parameter in a call to
a function that expected a £loat type as its formal parameter, and neither the
compiler nor the run-time system would detect the inconsistency. For example,
because the bit string that represents the integer 23 is essentially unrelated to
the bit string that represents a floating-point 23, if an integer 23 is sent to a
function that expects a floating-point parameter, any uses of the parameter in
the function will produce nonsense. Furthermore, such problems are often
difficult to diagnose.’ The current version of C has eliminated this problem
by requiring all parameters to be type checked. Subprograms and parameter-
passing techniques are discussed in Chapter 9.

1.3.3.2 Exception Handling

The ability of a program to intercept run-time errors (as well as other
unusual conditions detectable by the program), take corrective measures, and
then continue is an obvious aid to reliability. This language facility is called
exception handling. Ada, C++, Java, and C# include extensive capabilities
for exception handling, but such facilities are practically nonexistent in some
widely used languages, for example C. Exception handling is discussed in
Chapter 14.

1.3.3.3 Aliasing

Loosely defined, aliasing is having two or more distinct names in a program
that can be used to access the same memory cell. It is now generally accepted
that aliasing is a dangerous feature in a programming language. Most program-
ming languages allow some kind of aliasing—for example, two pointers (or ref-
erences) set to point to the same variable, which is possible in most languages.
In such a program, the programmer must always remember that changing the

3. In response to this and other similar problems, UNIX systems include a utility program
named lint that checks C programs for such problems.



1.3.4

1.3 Language Evaluation Criteria 39

value pointed to by one of the two changes the value referenced by the other.
Some kinds of aliasing, as described in Chapters 5 and 9, can be prohibited by
the design of a language.

In some languages, aliasing is used to overcome deficiencies in the lan-
guage’s data abstraction facilities. Other languages greatly restrict aliasing to
increase their reliability.

1.3.3.4 Readability and Writability

Both readability and writability influence reliability. A program written in a
language that does not support natural ways to express the required algorithms
will necessarily use unnatural approaches. Unnatural approaches are less likely
to be correct for all possible situations. The easier a program is to write, the
more likely it is to be correct.

Readability affects reliability in both the writing and maintenance phases
of the life cycle. Programs that are difficult to read are difficult both to write
and to modify.

Cost

The total cost of a programming language is a function of many of its
characteristics.

First, there is the cost of training programmers to use the language, which
is a function of the simplicity and orthogonality of the language and the expe-
rience of the programmers. Although more powerful languages are not neces-
sarily more difficult to learn, they often are.

Second, there is the cost of writing programs in the language. This is a
function of the writability of the language, which depends in part on its close-
ness in purpose to the particular application. The original efforts to design and
implement high-level languages were driven by the desire to lower the costs
of creating software.

Both the cost of training programmers and the cost of writing programs in
a language can be significantly reduced in a good programming environment.
Programming environments are discussed in Section 1.8.

Third, there is the cost of compiling programs in the language. A major
impediment to the early use of Ada was the prohibitively high cost of run-
ning the first-generation Ada compilers. This problem was diminished by the
appearance of improved Ada compilers.

Fourth, the cost of executing programs written in a language is greatly
influenced by that language’s design. A language that requires many run-time
type checks will prohibit fast code execution, regardless of the quality of the
compiler. Although execution efficiency was the foremost concern in the design
of early languages, it is now considered to be less important.

A simple trade-off can be made between compilation cost and execution
speed of the compiled code. Optimization is the name given to the collection
of techniques that compilers may use to decrease the size and/or increase the
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execution speed of the code they produce. If little or no optimization is done,
compilation can be done much faster than if a significant effort is made to
produce optimized code. The choice between the two alternatives is influenced
by the environment in which the compiler will be used. In a laboratory for
beginning programming students, who often compile their programs many
times during development but use little code at execution time (their programs
are small and they must execute correctly only once), little or no optimization
should be done. In a production environment, where compiled programs are
executed many times after development, it is better to pay the extra cost to
optimize the code.

The fifth factor in the cost of a language is the cost of the language imple-
mentation system. One of the factors that explains the rapid acceptance of Java
is that free compiler/interpreter systems became available for it soon after its
design was released. A language whose implementation system is either expen-
sive or runs only on expensive hardware will have a much smaller chance of
becoming widely used. For example, the high cost of first-generation Ada com-
pilers helped prevent Ada from becoming popular in its early days.

Sixth, there is the cost of poor reliability. If the software fails in a critical
system, such as a nuclear power plant or an X-ray machine for medical use, the
cost could be very high. The failures of noncritical systems can also be very
expensive in terms of lost future business or lawsuits over defective software
systems.

The final consideration is the cost of maintaining programs, which includes
both corrections and modifications to add new functionality. The cost of soft-
ware maintenance depends on a number of language characteristics, primarily
readability. Because maintenance is often done by individuals other than the
original author of the software, poor readability can make the task extremely
challenging.

The importance of software maintainability cannot be overstated. It has
been estimated that for large software systems with relatively long lifetimes,
maintenance costs can be as high as two to four times as much as development
costs (Sommerville, 2010).

Of all the contributors to language costs, three are most important: pro-
gram development, maintenance, and reliability. Because these are functions of
writability and readability, these two evaluation criteria are, in turn, the most
important.

Of course, a number of other criteria could be used for evaluating pro-
gramming languages. One example is portability, or the ease with which pro-
grams can be moved from one implementation to another. Portability is most
strongly influenced by the degree of standardization of the language. Some
languages are not standardized at all, making programs in these languages very
difficult to move from one implementation to another. This problem is allevi-
ated in some cases by the fact that implementations for some languages now
have single sources. Standardization is a time-consuming and difficult process.
A committee began work on producing a standard version of C++ in 1989. It
was approved in 1998.
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Generality (the applicability to a wide range of applications) and well-
definedness (the completeness and precision of the language’s official defining
document) are two other criteria.

Most criteria, particularly readability, writability, and reliability, are nei-
ther precisely defined nor precisely measurable. Nevertheless, they are useful
concepts and they provide valuable insight into the design and evaluation of
programming languages.

A final note on evaluation criteria: language design criteria are weighed
differently from different perspectives. Language implementors are concerned
primarily with the difficulty of implementing the constructs and features of the
language. Language users are worried about writability first and readability
later. Language designers are likely to emphasize elegance and the ability to
attract widespread use. These characteristics often conflict with one another.

1.4 Influences on Language Design

14.1

In addition to those factors described in Section 1.3, several other factors influ-
ence the basic design of programming languages. The most important of these
are computer architecture and programming design methodologies.

Computer Architecture

The basic architecture of computers has had a profound effect on language
design. Most of the popular languages of the past 60 years have been designed
around the prevalent computer architecture, called the von Neumann
architecture, after one of its originators, John von Neumann (pronounced
“von Noyman”). These languages are called imperative languages. In a von
Neumann computer, both data and programs are stored in the same memory.
The central processing unit (CPU), which executes instructions, is separate
from the memory. Therefore, instructions and data must be transmitted, or
piped, from memory to the CPU. Results of operations in the CPU must be
moved back to memory. Nearly all digital computers built since the 1940s have
been based on the von Neumann architecture. The overall structure of a von
Neumann computer is shown in Figure 1.1.

Because of the von Neumann architecture, the central features of imper-
ative languages are variables, which model the memory cells; assignment
statements, which are based on the piping operation; and the iterative form
of repetition, which is the most efficient way to implement repetition on this
architecture. Operands in expressions are piped from memory to the CPU,
and the result of evaluating the expression is piped back to the memory cell
represented by the left side of the assignment. Iteration is fast on von Neumann
computers because instructions are stored in adjacent cells of memory and
repeating the execution of a section of code requires only a branch instruction.
"This efficiency discourages the use of recursion for repetition, although recur-
sion is sometimes more natural.
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