
Variables and
Bindings
Programming Languages
William Killian
Millersville University

Background

• Variables are necessary with imperative languages
• Imperative Languages are abstractions of the von

Neumann Architecture
• Variables abstract Memory
• Operations/Instructions abstract the CPU

• Variables/Bindings are defined by a set of attributes
• These attributes can affect the behavior of the program
• These attributes are common across all languages

Naming

• Naming things is hard
“There are two hard problems in Computer Science:
naming things, cache invalidation, and off-by-one errors”

• Things to consider:
• Should capitalization matter?
• Variable length (maximum?) (minimum?!)
• What happens if I name a function/variable “for”?
• Acceptable characters to include?
• Naming conventions (e.g. FORTRAN)

Naming

• Case Sensitivity
• coolFunction
• CoolFunction
• COOLFUNCTION

• Length
• Should a minimum length be imposed?
• Should a maximum length be imposed?
• Languages:

• C99: no limit, first 63 are significant
• Java/C#: no limit, all significant
• C++: no limit, implementation specific behavior (lol)

Naming

• Naming Conventions
• PHP: All variables must start with a $
• Perl (older): first character determines type
• FORTRAN (older): first character determines type
• Ruby: @ - Instance variables, @@ - Class variables
• OCaml: Capital first letter (Module or Discriminator)

• Keywords / Reserved Words
• Keyword – special only in certain context

• async in C#, override in C++
• Reserved – cannot be used as a user-defined name

• this in Java/C++, list in OCaml

Variables

A variable is an abstraction
of a memory cell

Composed of six attributes:
1. Name
2. Address
3. Value
4. Type
5. Lifetime
6. Scope

Variables

• Name
• An identifier for the variable
• Not all variables have names! (how?)

• Address
• The location in memory associated with the variable
• A variable may have different addresses at different times
• A variable may have different addresses at different places
• When two variables have the same address, they alias one

another. Aliasing may be considered harmful

Variables

• Type
• Determines the range of possible values
• Determines the set of possible operations

*p for C++ pointers / iterators
+ - * / for integer/floating-point operations (C/C++/Java)
+. -. *. /. for floating-point operations (OCaml)

• Value
• Contents of the location in memory associated
• Two types of values: l-values and r-values

• l-value: the address of the variable (necessary for references)
• r-value: the value of the variable (defined by type)

Bindings

The concept of a binding
is to form an association
between an entity and its
attribute

Examples
• Variable and its type
• Variable and its value
• Operation and symbol

Binding Time: when the
association is formed

Possible Binding Times

• Language Design Time
Binding operator symbols to operation

• Language Implementation Time
Bind floating-point type to representation (e.g. IEEE 754)

• Compile Time
Bind a variable to a type

• Load Time
Bind a C/C++ static variable to a memory cell

• Run Time
Bind a non-static variable to a memory cell

Static and Dynamic Binding

Static
First occurs before runtime and remains unchanged

Dynamic
First occurs during execution or can change

Type Binding

• How is a type specified?
• Explicit: specify the type – most compiled languages
• Inferred: omit the type – Scripting Languages, OCaml

• When does the binding take place?
• Compile time?
• Run time?

• Can the type change during a program?
• Yes: JavaScript, Python, Ruby, Perl
• No: Java, C, C++, Swift, OCaml

Bindings
To Be Continued…

