
Subprograms:
Lambdas, Closures,
Generators, and
Coroutines
Programming Languages
William Killian
Millersville University

Outline

• Lambda Functions
• Closures
• Re-entrant Subprograms
• Generators
• Coroutines

Lambda
Functions

Lambda Functions

• Also called
• function literal
• lambda abstraction
• anonymous function
• lambda expression

• Originate from Alonzo Church from his invention of
Lambda Calculus around 1936 (all functions were
anonymous)

In programming languages since 1958

Lambda Function Tour

Lisp
(lambda () sexpr)
(lambda (x y) (+ x y))

JavaScript
() => expr
() => { stmts… }
(x, y) => x + y
function(x, y) { return x + y; }

Lambda Function Tour

OCaml
fun () -> ...
fun x y -> x + y

Java
() -> expr
() -> { stmts… }
(x, y) -> x + y
(x, y) -> { return x + y; }
(double x, double y) -> { return x + y; }

Lambda Function Tour

Python
lambda: expr
lambda x, y: x + y

Swift
{ () in expr }
{ () in stmts… }
{ x, y in x + y }
{ (x: int, y: int) -> int in return x + y }
{ $0 + $1 }

Lambda Function Tour

C++
[]() { stmts… }
[](auto x, auto y) { return x + y; }
[](int x, int y) -> int { return x + y; }

Ruby
lambda { expr }
lambda { stmts… }
lambda { |x, y| x + y }
-> x, y { x + y }

Closures

Closures

• Closures need not have a name (but they can)
• Key difference: closures access non-local variables
• Most often disguised as a lambda with no

syntactical difference
• Lisp
• Java
• Javascript
• OCaml
• Python
• Swift
• Ruby

• Exception: C++

Closure Example

JavaScript
x => y => x + y
x => { return y => x + y }

^

OCaml
let multiply n list =

List.map (fun x -> n * x) list
^

Closure Example

C++
std::vector<int>
multiply (int n, std::vector<int> list) {

std::for_each (list, [n] (int& value) {
return value * n; //^ explicit copy of n

});
return list;

}

Closure Example

C++
std::vector<int>
multiply (int n, std::vector<int> list) {

std::for_each (list, [=] (int& value) {
return value * n; //^ all non-locals are

}); // copied and stored
return list;

}

Closure Example

C++
std::vector<int>
multiply (int n, std::vector<int> list) {

std::for_each (list, [&] (int& value) {
return value * n; //^ all non-locals are

}); // passed by reference
return list;

}

Re-Entrant
Subprograms

Function Definition

A function is a subprogram that…

• Has exactly one entry point
• The beginning of the function!

• May have one or more exit points
• Return statements throughout
• Exceptional control flow (coming up)

Function Definition

A function is a subprogram that…

• Has exactly one entry point
• The beginning of the function!

• May have one or more exit points
• Return statements throughout
• Exceptional control flow (coming up)

• What if we could re-enter a function?

Generators

• Generators are the simplest type of re-entrant
subprogram.

• Generators can give us different values each
invocation time

• Values are not computed when the sequence is
created, but when they are asked for!

Generators

Goal
• Don’t want to exit the subprogram,

simply “pause” it in some way

• Achieved by not using return

• Define a new control flow keyword!

Generators

• yield values
• Yield “pauses” execution of the subprogram.
• When we call the subprogram we resume from

where we left off!

Python:
def first_three():

yield 1
yield 2
yield 3

Generators

def ones():
while True:

yield 1

def natural():
x = 0
while True:

x += 1
yield x

gen = natural()
next(gen)
next(gen)
next(gen)
next(gen)

Generators

Exercise
def fibonacci():

Recursive Generators

from os import listdir

from os.path import isfile, join, exists

def print_files(path):

for file in listdir(path):

full_path = join(path, file)

if exists(full_path):

if isfile(full_path):

yield full_path

else:

yield from print_files(full_path)

Coroutines

• A generalization of all subprograms
• Execution of a subprogram can be paused or resumed
• Often used for multi-tasking and concurrent programming

• Subroutines
• Called once, returned once
• Never pauses exection

• Generators
• Called multiple times, returns values multiple times
• Pauses execution immediately after yielding

• Coroutines
• Called multiple times, returns values multiple times
• Execution can continue after yielding a value

Coroutines: Language Support

• C++ (since C++20)
• C#
• D
• F#
• Go
• JavaScript
• Julia
• Lua

• PHP
• Prolog
• Python
• Ruby
• Rust
• Scheme (lisp-like)

Coroutines

• Subprograms that both produce and consume
values which are “yielded” are called coroutines

• can also consume values using the yield expression
(different from the yield statement!)

Coroutines Example

def match(pattern):
print('Looking for ' + pattern)
try:

while True:
s = (yield)
if pattern in s:

print(s)
except GeneratorExit:

print('Done.')

Coroutines Example

>>> matcher = match('hello')
>>> next(matcher)

Looking for hello
>>> matcher.send('hello there')

hello there
>>> matcher.send('goodbye now')
>>> matcher.send('Othello is a great play')

Othello is a great play
>>> matcher.close()

Done.

