OCaml: Variants

Programming Languages
William Killian
Millersville University

Core OCaml Datatypes

* Primitives
int float string bool

* Aggregates:
'a list tuple (product type)

 What’s missing?
sum types

Variants

* Also known as discriminated unions
* Must provide a named label for each option

* Only one can be active at any time
* Examples:
type suit =
Spades | Hearts | Clubs | Diamonds

type 'a option =

Some of 'a | None

Variants

* They can be used to define a new type and possible
range of values for that type:

type suit =
Spades | Hearts | Clubs | Diamonds

* They can optionally hold information.

* We will have to add of <type> to each choice which
can hold additional information

type int option =
Some of int | None

Variant Behavior

type =
Spades | Hearts | Clubs | Diamonds

* When we have an expression of type , it can
only hold one of four possible choices:

* Spades, Hearts, Clubs, and Diamonds

* The tag, or discriminator, tells OCaml what choice
we want to currently select

* The discriminator must always start with a capital
letter. OCaml will yell at us otherwise.

Variant Behavior

* You can view each choice as a box.
» By default, each box (or choice) will be empty

 When a discriminator includes a storage specifier

(denoted with of <type>), then the box will hold
a value of the specified type

type int _option = Some of int | None
let x = None

let y = Some 5

(* x and y both have type int option *)

Using Variants

type suit =

Spades | Hearts | Diamonds | Clubs
type rank =

Ace | King | Queen | Jack | Num of int
(* suit and rank are variants *)

type card = rank * suit

let top of deck : card = (Ace, Spades)
let bottom of deck : card = (Num 2, Clubs)

Using Variants

e But what if | wanted to inspect a variant?
let = List.hd (shuffle)
print card

* How can we write print card?
* Need to inspect the rank
* Need to inspect the suit

* |deas?

Pattern Matching

type suit = match r with
Spades Spades -> "&"
Hearts Hearts -> "¥"
Diamonds Diamonds -> "e"
Clubs Clubs -> "&"

* For each discriminator, add a match case.
* All expressions for the match must result in the same type

Pattern Matching

type suit = match |r|with
Spades Spades -> A"
Hearts Hearts -> "e"
Diamonds Diamonds| ->| "e"
Clubs Clubs -> "
suit string

* For each discriminator, add a match case.
* All expressions for the match must result in the same type

Pattern Matching

type rank =
Ace

King

Queen

Jack

Num of int

N\

Ace ->
King ->
Queen ->
Jack ->

Num x ->

/

match r with

"Ace"”

"King"

"Queen”

"Jack”
string of int x

The type of x is defined by the type specified in the discriminator

For each discriminator, add a match case.
All expressions for the match must result in the same type

Pattern Matching

rank string
type rank = match |r |with
Ace Ace -> |"Ace"
King King |[-> |"King"
Queen Queen | -> ["Queen”
Jack Jack |[->["Jack™
Num of int Num x|-> |string of int x

N\ /

The type of x is defined by the type specified in the discriminator

* For each discriminator, add a match case.
* All expressions for the match must result in the same type

Problem

* | want to have a list of int, float, bool, and string
* But OCaml is yucky and | can’t do that...

... unless | use variants!

Solution Procedure:
1. Define a type that can hold all the types | need

2. Write appropriate helper methods
e string_of

Defining a Type
* We need to hold: int, float, bool, and string

type box =

Int of int
Float of float
Bool of bool
String of string

Using the Type

let my list = |
Int 4;
Float 1.2;
Bool true;
String "no-u";
Int 6;

my list hastypebox list
where each element is of type box

Using the Type

my list hastype box list
where each element is of type box

| should write a string of function which accepts
a box value and returns the string representation

let string of v = ...
(* with types specified *)
let string of (v:box) : string = ...

Using the Type

let string of v =

match v with
Int 1 -> string of int i
Float £ -> string of float f
Bool b -> string of bool b
String s -> s

Using the Type

let string of = fun v ->

match v with
Int 1 -> string of int i
Float £ -> string of float f
Bool b -> string of bool b
String s -> s

(* rewritten using fun *)

Matching Functions

The code pattern of:
fun v -> match v with

iIs so common, there is a special abbreviation syntax
function

where the argument name is completely omitted

* Match expression rules still apply
* All cases must be elaborated
* All cases must return the same type

Matching Functions

let string of = function

Int 1 -> string of int i
Float £ -> string of float f
Bool b -> string of bool b
String s -> s

let as string
List.map string of my list
(* [Il4ll; Il1.2ll; Iltruell; Ilno_ull; "6"] *)

Recap

* We can define our own discriminated union type
when we want to choose between options:

type t = C1 | c2| 3
* Each choice can optionally hold a value.
type t = C1
| C2 of int
| C3 of string * float

* Must use pattern matching / match ... with when
extracting information

 Function is shorthand for
fun x -> match x with

