
OCaml: Functions, Lists,
and Control Flow

Programming Languages
William Killian

Millersville University

Functions

• The basic building-block of Ocaml
• Functions are expressions
• Functions have a type
• Functions (when fully invoked) yield a value

• Looks like a binding at first

let x = 4;;
let my_function x y = (* hidden *);;

Function Syntax

Abbreviated:
let fn x =
(* code that uses x *)

;;

Full:
let fn = fun x ->
(* code that uses x *)

;;

Function Syntax (two params)

Abbreviated:
let fn x y =
(* code that uses x and y *)

;;

Full:
let fn = fun x -> fun y ->
(* code that uses x and y *)

;;

Function Syntax (three params)

Abbreviated:
let fn x y z =
(* code that uses x, y, and z *)

;;

Full:
let fn = fun x -> fun y -> fun z ->
(* code that uses x, y, and z *)

;;

Function Evaluation

let add2 x =
2 + x

;;

add2 3 = 2 + 3 = 5

Function Evaluation (two params)

let add x y =
x + y

;;

add 2 3 = 2 + 3 = 5

Partial Function Evaluation

let add x y =
x + y

;;

let add2 = add 2
;;

Partial Function Evaluation

let add = fun x -> fun y ->
x + y

;;

let add2 = add 2 (* substitute 2 for x *)
;;

Partial Function Evaluation

let add = fun x -> fun y ->
x + y

;;

let add2 = fun x -> fun y ->
2 + y

;;

Partial Function Evaluation

let add = fun x -> fun y ->
x + y

;;

let add2 = fun y ->
2 + y

;;

Aside: Local Binding

• Bindings are applied at the global scope
• If we want a local binding that is temporarily used,

we have a special syntax let … in
• You can view this like a “local variable”

let x = 4;;
let x4 =
let x2 = x * x in
x2 * x2;;

(* x2 not visible *)

Basic Control Flow

• In Programming 1 we learn about conditionals
• Basic constructs: if, else
• Ideas: Boolean expression

let even_odd val =
let is_even = val mod 2 = 0 in
if is_even then "even" else "odd"

Basic Control Flow: Operators

= equality
!= Inequality (can also use <>)
> Greater
< Less
>= Greater or equal
<= Less or equal

NOTE: always must compare the same types
All comparisons return a bool (true or false)

Recursive Functions

Almost the same syntax
Just need to tell OCaml a function is recursive

let rec sumToN n =
if n = 0 then
0

else
n + sumToN (n - 1)

;;

Lists a' list

• Immutable (cannot be changed)
• Finite sequence of elements
• All elements must be the same type
Empty list:

[]
List with three ints:

[1; 2; 3]
1::2::3::[]
1::(2::(3::([])))

List Operators Cons ::

Prepend an element to a list
• Does not modify the original list
• The original list can be empty
• The types must match

module List
let cons (val : a') (lst : a' list) =

val::lst

List Operators Append @

Appends a list to the end of another list
• Does not modify either original list
• The types must match

[1] @ [2; 3; 4] [1; 2; 3; 4]
[1; 2] @ [3] [1; 2; 3]

let (@) (l1 : a' list) (l2 : a' list) =
(* implementation hidden *)

List Operators hd

Extract the first element of the list
• Returns the “left side” of the cons

List.hd [1; 2; 3] 1

module List
let hd (lst : a' list) =
match lst with
| hd::_ -> hd
| [] -> raise (Failure "empty list")

List Operators tl

Extract the remaining elements of the list
• Returns the “right side” of the cons

List.tl [1; 2; 3] [2; 3]

module List
let tl (lst : a' list) =
match lst with
| _::tl -> tl
| [] -> raise (Failure "empty list")

Advanced Control Flow

• What was match ... with ?
• Language feature called “pattern matching”
• SUPER POWERFUL
• OCaml will try to do a lot for you
• If the value matches -> use it
• If the type matches -> use it
• If it would be a well-formed expression -> use it

Basic Pattern Matching

if expr then valT else valF
Can be rewritten as:

match expr with
| true -> valT
| false -> valF

Or:
match expr with
| true -> valT
| _ -> valF

List Pattern Matching

• Let’s revisit List.hd

let hd (lst : a' list) =
match lst with
(* we can extract the front *)

| hd::_ -> hd
(* have an empty list – bad *)

| [] -> raise (Failure "empty list")

Value Pattern Matching

Print out a number. But for multiples of three it should output
“Fizz” instead of the number and for the multiples of five
output “Buzz”. For numbers which are multiples of both three
and five output “FizzBuzz”.

let fizzbuzz n =
match (n mod 3, n mod 5) with
| (0, 0) -> "FizzBuzz"
| (0, _) -> "Fizz"
| (_, 0) -> "Buzz”
| _ -> string_of_int n

Value Pattern Matching

Print out a number. But for multiples of three it should output
“Fizz” instead of the number and for the multiples of five
output “Buzz”. For numbers which are multiples of both three
and five output “FizzBuzz”.

let fizzbuzz n =
match (n mod 3, n mod 5) with
| (0, 0) -> "FizzBuzz"
| (0, _) -> "Fizz"
| (_, 0) -> "Buzz”
| _ -> string_of_int n

