
CSCI 340: Computational Models

The Chomsky Hierarchy

Chapter 24 Department of Computer Science

Grammars

• We have yet to discover the “language structure” that define

recursively enumerable sets independent of Turing Machines

• �estion: Why are context-free languages called “context-free”?

If there is a production N → t , where N is any nonterminal and

T is any terminal, then the replacement of t for N can be made

in any situation

• English is not context-free

Base→ cowardly

Ball→ dance

Baseball⇒ cowardly dance

• We make use of the context of words — their adjacent words

• Insight: Instead of replacing one string character by a string of

characters (CFG), we must consider replacing an entire string of

characters (including both terminals and nonterminals)

1 / 20

Grammars

• We have yet to discover the “language structure” that define

recursively enumerable sets independent of Turing Machines

• �estion: Why are context-free languages called “context-free”?

If there is a production N → t , where N is any nonterminal and

T is any terminal, then the replacement of t for N can be made

in any situation

• English is not context-free

Base→ cowardly

Ball→ dance

Baseball⇒ cowardly dance

• We make use of the context of words — their adjacent words

• Insight: Instead of replacing one string character by a string of

characters (CFG), we must consider replacing an entire string of

characters (including both terminals and nonterminals)

1 / 20

Phase-Structure Grammars

A phrase-structure grammar is a collection of three things:

1 A finite alphabet Σ of le�ers called terminals
2 A finite set of symbols called nonterminals that includes the

start symbol S

3 A finite list of productions of the form:

String 1→ string 2

Where string 1 can be any string of terminals and nonterminals

that contains at least one nonterminal and string 2 is any string

of terminals and nonterminals whatsoever.

A derivation in a phrase-structure grammar is a series of working

strings beginning with S, which, by making substitutions according

to the productions, arrives at a string of all terminals.

The language generated by a phase-structure grammar is the set of

all strings of terminals that can be derived starting at S.

2 / 20

Example

S → XS | Λ S is the language of zero or more X ’s

X → aX | a X is the language of one or more a’s

aaaX → ba anytime we see aaaX , we can replace it with ba

S ⇒ XS By 1

⇒ XXS By 1

⇒ XX By 1

⇒ aXX By 2

⇒ aaXX By 2

⇒ aaaXX By 2

⇒ baXX By 3

⇒ baaXX By 2

⇒ baaaX By 2

⇒ bba By 3
3 / 20

Phase-Structure Grammars > CFG

Theorem

At least one language that cannot be generated by a CFG can be
generated by a phase-structure grammar

Proof.

Consider the following phase-structure grammar over Σ = { a b }

Prod 1 S → aSBA

Prod 2 S → abA

Prod 3 AB→ BA

Prod 4 bB→ bb

Prod 5 bA→ ba

Prod 6 aA→ aa
�

4 / 20

Showing the grammar generates anbnan

To generate the word ambmam
for some fixed number m ...

Apply Prod 1 exactly (m − 1) times:

a a a . . . a S BA BA BA . . . BA
(m − 1) a’s followed by S followed by (m − 1) BA’s

Then Prod 2 once:

a a a a . . . a b A BA BA BA . . . BA
m a’s followed by b followed by m A’s and (m − 1) B’s

Apply Prod 3 enough times such that all B’s come before all A’s

a a a a . . . a b BBB . . . AAA . . . A
m a’s followed by b followed by (m − 1) B’s then m A’s

Apply Prod 4 until it can’t, Prod 5 until it can’t, Prod 6 until it can’t

a a a a . . . a b b b b . . . b a a a a . . . a
m a’s followed by m b’s followed by m a’s

5 / 20

Showing the grammar only generates anbnan

• Consider some derivation aSBA — which is of the form:

“some a’s” S “equal number of A’s and B’s”

• If we never apply Prod 2 then the working string will contain an

S and not generate any words

• As soon as Prod 2 is applied, we have a string of the form:

“m a’s” abA “collection of m A’s and m B’s”

• Prod 3 merely scrambles this collection of A’s and B’s by

shi�ing all B’s to come before all A’s.

• Productions 4, 5, and 6 are converting with rules of the form:

tN → � where t is a terminal and N is a nonterminal

• All productions from 4, 5, and 6 are done one-at-a-time from

le�-to-right. The resulting string is of the form:

a(m+1) b bm a(m+1)

6 / 20

Phase-Structure Grammars

Theorem

If we have a phase-structure grammar that generates the language L,
then there is another grammar that also generates L which has the same
alphabet of terminals and in which each production is of the form:

string of nonterminals → string of terminals and nonterminals

Where the le� side cannot be Λ but the right side can

Proof.

1 For each terminal, introduce a new nonterminal and change

every occurrence of the “old” symbol to the “new” symbol. For

example, aSbXb→ bbXYX becomes ASBXB→ BBXYX

2 Add the new productions. From the example above, introduce

A→ a and B→ b

These new productions are now of the form N+ → N∗ or N → t �

7 / 20

Example of Phase-Structure Modification

Consider the phase-structure grammar over Σ = { a b }:

S → aSBA | abA

AB→ BA

bB→ bb

bA→ ba

aA→ aa
Is transformed into:

S → XSBA | XYA

AB→ BA

YB→ YY

YA→ YX

XA→ XX

X → a

Y → b
8 / 20

Type 0 Grammars

Definition

A phase-structure grammar is called type 0 if each production is:

non-empty string of nonterminals → any string of terminals and nonterminals

• We cannot allow the production “anything → anything”

This would allow a terminal to yield some other string (even a

nonterminal!) This goes against the philosophy of what a

terminal is

• We do not want to allow any Λ on the le� hand side

This could arbitrarily have le�ers pop into words

indiscriminately (see Genesis 1:3 for “Λ→ light”)

9 / 20

The Chomsky Hierarchy

10 / 20

The Chomsky Hierarchy

11 / 20

Type 0 = TM

Theorem

If L is generated by a type 0 grammar G, then there is a TM that accepts
L

Proof.

1 Insert $ at the beginning and end of the input, followed by an S
abb∆ becomes abbS∆

2 In the TM, enter a “grand central state” similar to the POP state

for PDA simulations of CFGs

The field of the TAPE beginning with the second $ will keep

track of the working string. We want to simulate

(nondeterministically) the application of all productions

12 / 20

Type 0 = TM

Proof. (continued)

3 If we were lucky enough to apply just the right productions at

just the right points in the working string, we branch to a

subprogram that compares the working string to the input

string.

• If the input was derivable, the machine HALTs

• If the number of words generated was finite and none match, the

machine will CRASH

• If the grammar generates an infinite number of words where the

input is not derivable, the machine will LOOP forever

4 This NTM accepts any word in the language generated by G and

only those words �

Theorem

If a language is r.e., it can be generated by a type 0 grammar

Proof is omi�ed due to scope and length... (10 pages)

13 / 20

Product and Kleene Closure of r.e. Languages

Theorem

If L1 and L2 are recursively enumerable languages, then so is L1L2.
The recursively enumerable languages are closed under product.

Proof.

1 Add the subscript 1 to all nonterminals and terminals of L1

2 Add the subscript 2 to all nonterminals and terminals of L2

3 Introduce a new production S → S1S2

4 Introduce new productions t1 → t for all terminals in L1

5 Introduce new productions t2 → t for all terminals in L2

All derivations will be unique and independent between S1 and S2.

The newly introduced production of S → S1S2 ensures the

concatenation �

14 / 20

Product and Kleene Closure of r.e. Languages

Theorem

If L is recursively enumerable, then L∗ is also. The recursively
enumerable languages are closed under Kleene star.

Proof.

1 We’d want to introduce something like S → S1S | Λ but this

won’t work!

Multiple S1’s could potentially interact!

Replicate all productions of L and append 2 to all nonterminals.

2 Then append 1 to all nonterminals found in L.

3 Introduce the following new productions:

S → S1S2S | S1 | Λ

From S we can only produce: Λ S1 S1S2 S1S2S1 S1S2S1S2 ... �

15 / 20

Context-Sensitive Grammars

Definition

A generative grammar in which the le� side of each production is not

longer than the right side is called a context-sensitive grammar,
denoted CSG, or type 1.

• We presume all human languages are CSGs but cannot

mathematically prove it.

• All context-sensitive grammars are recursive.

Theorem

For every context-sensitive grammar G, there is some special TM that
accepts all the words generated by G and crashes for all other inputs

16 / 20

Context-Sensitive Grammars

Proof.

1 All rules make the working string longer

2 Since G is recursive, the shortest derivation has no “loops”

3 We can iteratively apply all valid productions on a working

string and ensure unique working strings

4 Our TM will generate all words less than an upper length w in a

procedure similar to how a TM accepted type 0 grammars

5 In a finite number of steps it will either find a derivation for a

string, determine there is none, or crash

�

17 / 20

CSG Decidability

Knowing that a language is recursive translates into being able to

decide membership for it

Theorem

Given G, a context-sensitive grammar, and w, an input string, it is
decidable by a TM whether G generates w

Proof.

• Create the CWL code word for the TM based on G described in

the previous theorem

• Feed the encoded turing machine of G and w into the Universal

Turing Machine

• Because w either halts or crashes on the coded TM, membership

is decidable

�
18 / 20

The Language L

Theorem

There is at least one language L that is recursive but not context sensitive

Proof.

• There is some method that exists of encoding an entire CSG into

a single string of symbols.

• A TM can decide whether, given an input string, it is the “code

word” for some CSG

• Let us define the language L (we ran out of Turing’s names):

L = {all code words for CSG grammars that cannot be

generated by the very grammars they encode}

• L must be recursive — it will never loop

• L is not context-sensitive — if it were then all its words would be

generated by some CSG G. If the code word is in L then it

couldn’t be generated by the grammar it represents. �
19 / 20

Homework 12a

1 Consider the grammar:

Prod 1 S → ABS | Λ

Prod 2 AB→ BA

Prod 3 BA→ AB

Prod 4 A→ a

Prod 5 B→ b

• [4pts each] Derive the following words: abba , babbaaab
• [4pts] Prove every word generated by this grammar has equal

number of a’s and b’s (EQUAL)

2 [4pts] Find a grammar that generates all words with more a’s

than b’s (MOREA)

3 [4pts] Find a grammar that generates all words not in EQUAL

20 / 20

