

CSCI 340: Computational Models

Decidability

Chapter 18 Department of Computer Science

Decidability

- How can we tell whether two CFGs define the same languages?
- ② Given a CFG, how can we tell whether it is ambiguous?
- Given an ambiguous CFG, how can we tell there exists a non-ambiguous CFG accepting the same language?
- 4 How can we tell whether the complement of a CFG is also context-free?
- **6** How can we tell whether the intersection of two CFGs is also context-free?
- 6 Given two CFGs, how can we tell whether they have a word in common?
- Given a CFG, how can we tell whether there are any words it does not generate?

Decidability

- How can we tell whether two CFGs define the same languages?
- ② Given a CFG, how can we tell whether it is ambiguous?
- Given an ambiguous CFG, how can we tell there exists a non-ambiguous CFG accepting the same language?
- 4 How can we tell whether the complement of a CFG is also context-free?
- **6** How can we tell whether the intersection of two CFGs is also context-free?
- **6** Given two CFGs, how can we tell whether they have a word in common?
- Given a CFG, how can we tell whether there are any words it does not generate?

Which of these questions are decidable?

Decidability

None of the prior questions are *decidable*!

There are no algorithms to answer any of these for any CFG

What Exists

- What is known
- What will be known
- What might have been known but nobody will ever care enough to figure it out

What Does Not Exist

- Married bachelors
- Algorithms for Questions 1-7
- A good 5-cent cigar
- A funny joke from Professor Killian

So what questions can we answer about Context-Free Grammars?

Three Fundamental Questions We Can Answer

• Emptiness

Given a CFG, can we tell whether or not it generates any words at all?

Finiteness

Given a CFG, can we tell whether or not the language it generates is finite of infinite?

Membership

Given a CFG and a particular string of characters w, can we tell whether or not w can be generated by the CFG?

Emptiness

Theorem

Given any CFG, there is an algorithm to determine whether or not it can generate **any** words at all.

Proof.

- We can already show whether or not Λ can be produced
- Convert the grammar to CNF
- If there is a production of the form $S \to t$, then t is a word in the language
- If there are no such productions, then we propose the following:
- Step 1 For each Nonterminal N that has productions of the form $N \to t$ where t is a terminal **or** string of terminals, replace N with t across all productions
- Step 2 Repeat Step 1 until either *S* is eliminated or no new terminals are eliminated. If *S* has been eliminated, then the CFG produces some words; if not, then it does not.

Emptiness

Proof (Continued).

- The algorithm is finite since we will at most run Step 1 for every unique non-terminal in the original CNF form of the grammar.
- The string of nonterminals that will eventually replace *S* is a word that could be generated by the CFG.
- Some sequence of these "backwards replacements" (Step 1) will eventually reach back to S if there is any word in the language.

Example

$S \rightarrow XY$	$S \rightarrow XY$
$X \to AX \mid AA$	$X \to AX$
$Y \rightarrow BY \mid BB$	$Y \rightarrow BY \mid BB$
$A \rightarrow a$	$A \rightarrow a$
$B \rightarrow b$	$B \rightarrow b$

Usage of a Nonterminal Production (Uselessness)

Theorem

There is an algorithm to decide whether or not a given nonterminal X in a CFG is ever used in the generation of words.

A Clever Trick

Just for a minute, reverse S and X in all the production rules in the grammar. Use the "emptiness" algorithm to see whether we can derive a working string involving X that leads to a word.

Definition

A nonterminal that *cannot* ever produce a string of terminals is **unproductive**

Usage of a Nonterminal Production (Uselessness)

Algorithm (Deciding if *X* is Useless)

- Find all nonproductive nonterminals
- Purify the grammar by eliminating all productions from Step 1
- Paint all X's blue
- If any nonterminal is the left side of a production with anything blue on the right hand side, paint it (and any occurrences) blue
- **5** Repeat Step 4 until nothing blue is painted
- **6** If *S* is blue, then *X* is a useful member of the CFG. If not, *X* is useless

Example

$$S \rightarrow ABa \mid bAZ \mid b$$

 $A \rightarrow Xb \mid bZa$
 $B \rightarrow bAA$
 $X \rightarrow aZa \mid aaa$
 $Z \rightarrow ZAbA$

Finiteness

Theorem

There is an algorithm to decide whether a given CFG generates an infinite language or a finite language

Proof.

- There exists a procedure (next slide)
- If any word in the language is long enough to apply the pumping lemma to, we can produce an infinite sequence
- If the language is infinite, then the pumping lemma must be applicable
- We must find a self-embedded nonterminal *X* in our algorithm

8/13

Finiteness

Algorithm

- Use the "usefulness" algorithm to determine which nonterminals are useless. Eliminate all productions involving them
- ② Use the following algorithm to test each of the remaining nonterminals, in term, to see whether they are self-embedded. When a self-embedded one is discovered, stop. To test X:
 - Change all X's on the left side of productions into the Russian letter XK, but leave all X's on the right hand side of productions alone.
 - **m** Paint all X's blue.
 - f) If Y is any nonterminal that is the left side of any production with **some** blue on the right, paint all Y's blue.
 - Repeat step 2(iii) until nothing new is painted blue
 - \mathbf{v} If \mathbf{K} is blue, then \mathbf{X} is self-embedded; if not, then it is not.
- 3 If any nonterminal left in the grammar after step 1 is self-embedded, the language generated is infinite. If not, then the language is finite.

Finiteness

Example

$$S \rightarrow ABz \mid bAZ \mid b$$

 $A \rightarrow Xb \mid bZA$
 $B \rightarrow bAA$
 $X \rightarrow aZa \mid bA \mid aaa$
 $Z \rightarrow ZAbA$

Membership

Theorem

Given a CFG and a string x in the same alphabet, we can decide whether or not x can be generated by the CFG.

- Strategy created by Cocke, Kasami, and Younger (CKY)
- Out of scope for this class (Compilers)

Homework 10a

• Decide whether or not the following grammars generate any words. Show work! (2 points each)

$$S \rightarrow aSa \mid bSb$$

$$S \rightarrow XY \mid SY$$

$$X \rightarrow SY \mid a$$

$$Y \rightarrow SX \mid b$$

$$S \rightarrow AB$$

$$A \rightarrow BC \mid b$$

$$B \rightarrow CD$$

$$C \rightarrow DA$$

$$D \rightarrow a$$

$$S \rightarrow AB$$

$$A \rightarrow BSB \mid CC \mid a \mid b$$

$$B \rightarrow AAS \mid CC$$

$$C \rightarrow SS \mid b \mid bb$$

 $S \rightarrow XS$

 $X \rightarrow YX \mid a$

 $Y \rightarrow YY \mid XX$

Homework 10a

Decide whether or not the following grammars generate finite or infinite languages. Show work! (2 points each)

