
CSCI 340: Computational Models

Decidability

Chapter 18 Department of Computer Science

Decidability

1 How can we tell whether two CFGs define the same languages?

2 Given a CFG, how can we tell whether it is ambiguous?

3 Given an ambiguous CFG, how can we tell there exists a
non-ambiguous CFG accepting the same language?

4 How can we tell whether the complement of a CFG is also
context-free?

5 How can we tell whether the intersection of two CFGs is also
context-free?

6 Given two CFGs, how can we tell whether they have a word in
common?

7 Given a CFG, how can we tell whether there are any words it
does not generate?

Which of these questions are decidable?

1 / 13

Decidability

1 How can we tell whether two CFGs define the same languages?

2 Given a CFG, how can we tell whether it is ambiguous?

3 Given an ambiguous CFG, how can we tell there exists a
non-ambiguous CFG accepting the same language?

4 How can we tell whether the complement of a CFG is also
context-free?

5 How can we tell whether the intersection of two CFGs is also
context-free?

6 Given two CFGs, how can we tell whether they have a word in
common?

7 Given a CFG, how can we tell whether there are any words it
does not generate?

Which of these questions are decidable?

1 / 13

Decidability

None of the prior questions are decidable!

There are no algorithms to answer any of these for any CFG

What Exists
• What is known
• What will be known
• What might have been
known but nobody will ever
care enough to figure it out

What Does Not Exist
• Married bachelors
• Algorithms for �estions 1-7
• A good 5-cent cigar
• A funny joke from Professor
Killian

So what questions can we answer about Context-Free Grammars?

2 / 13

Three Fundamental �estions We Can Answer

1 Emptiness
Given a CFG, can we tell whether or not it generates any words
at all?

2 Finiteness
Given a CFG, can we tell whether or not the language it
generates is finite of infinite?

3 Membership
Given a CFG and a particular string of characters w , can we tell
whether or not w can be generated by the CFG?

3 / 13

Emptiness

Theorem
Given any CFG, there is an algorithm to determine whether or not it can
generate any words at all.

Proof.

• We can already show whether or not Λ can be produced
• Convert the grammar to CNF
• If there is a production of the form S → t , then t is a word in the
language
• If there are no such productions, then we propose the following:
Step 1 For each Nonterminal N that has productions of the form N → t

where t is a terminal or string of terminals, replace N with t
across all productions

Step 2 Repeat Step 1 until either S is eliminated or no new terminals are
eliminated. If S has been eliminated, then the CFG produces
some words; if not, then it does not.

4 / 13

Emptiness

Proof (Continued).

• The algorithm is finite since we will at most run Step 1 for every
unique non-terminal in the original CNF form of the grammar.
• The string of nonterminals that will eventually replace S is a
word that could be generated by the CFG.
• Some sequence of these “backwards replacements” (Step 1) will
eventually reach back to S if there is any word in the language.

�

Example
S → XY

X → AX | AA

Y → BY | BB

A→ a

B→ b

S → XY

X → AX

Y → BY | BB

A→ a

B→ b
5 / 13

Usage of a Nonterminal Production (Uselessness)

Theorem
There is an algorithm to decide whether or not a given nonterminal X in
a CFG is ever used in the generation of words.

A Clever Trick
Just for a minute, reverse S and X in all the production rules in the
grammar. Use the “emptiness” algorithm to see whether we can
derive a working string involving X that leads to a word.

Definition
A nonterminal that cannot ever produce a string of terminals is
unproductive

6 / 13

Usage of a Nonterminal Production (Uselessness)

Algorithm (Deciding if X is Useless)

1 Find all nonproductive nonterminals

2 Purify the grammar by eliminating all productions from Step 1

3 Paint all X ’s blue

4 If any nonterminal is the le� side of a production with anything
blue on the right hand side, paint it (and any occurrences) blue

5 Repeat Step 4 until nothing blue is painted

6 If S is blue, then X is a useful member of the CFG. If not, X is
useless

Example

S → ABa | bAZ | b

A→ Xb | bZa

B→ bAA

X → aZa | aaa

Z → ZAbA

7 / 13

Finiteness

Theorem
There is an algorithm to decide whether a given CFG generates an
infinite language or a finite language

Proof.

• There exists a procedure (next slide)
• If any word in the language is long enough to apply the
pumping lemma to, we can produce an infinite sequence
• If the language is infinite, then the pumping lemma must be
applicable
• We must find a self-embedded nonterminal X in our algorithm

�

8 / 13

Finiteness
Algorithm

1 Use the “usefulness” algorithm to determine which nonterminals
are useless. Eliminate all productions involving them

2 Use the following algorithm to test each of the remaining
nonterminals, in term, to see whether they are self-embedded.
When a self-embedded one is discovered, stop. To test X :

i Change all X ’s on the le� side of productions into the Russian
le�er �, but leave all X ’s on the right hand side of productions
alone.

ii Paint all X ’s blue.
iii If Y is any nonterminal that is the le� side of any production

with some blue on the right, paint all Y ’s blue.
iv Repeat step 2(iii) until nothing new is painted blue
v If � is blue, then X is self-embedded; if not, then it is not.

3 If any nonterminal le� in the grammar a�er step 1 is
self-embedded, the language generated is infinite. If not, then
the language is finite.

9 / 13

Finiteness

Example

S → ABz | bAZ | b

A→ Xb | bZA

B→ bAA

X → aZa | bA | aaa

Z → ZAbA

10 / 13

Membership

Theorem
Given a CFG and a string x in the same alphabet, we can decide whether
or not x can be generated by the CFG.

• Strategy created by Cocke, Kasami, and Younger (CKY)
• Out of scope for this class (Compilers)

11 / 13

Homework 10a

1 Decide whether or not the following grammars generate any
words. Show work! (2 points each)

i

S → aSa | bSb

ii

S → XY | SY

X → SY | a

Y → SX | b

iii

S → AB

A→ BC | b

B→ CD

C → DA

D → a

iv

S → XS

X → YX | a

Y → YY | XX

v

S → AB

A→ BSB | CC | a | b

B→ AAS | CC

C → SS | b | bb

12 / 13

Homework 10a

2 Decide whether or not the following grammars generate finite or
infinite languages. Show work! (2 points each)

i

S → XS | b

X → YZ

Y → ab

Z → XY

ii

S → XY | bb

X → YX

Y → XY | SS

iii

S → XY

X → AA | YY | b

A→ BC

B→ AC

C → BA

Y → a

iv

S → XY

X → AA | XY | b

A→ BC

B→ AC

C → BA

Y → a

v

S → SS | b

X → SS | SX | a

13 / 13

