CSCI 340: Computational Models

Decidability

Decidability

©® How can we tell whether two CFGs define the same languages?
® Given a CFG, how can we tell whether it is ambiguous?

® Given an ambiguous CFG, how can we tell there exists a
non-ambiguous CFG accepting the same language?

® How can we tell whether the complement of a CFG is also
context-free?

® How can we tell whether the intersection of two CFGs is also
context-free?

0 Given two CFGs, how can we tell whether they have a word in
common?

@ Given a CFG, how can we tell whether there are any words it
does not generate?

Decidability

©® How can we tell whether two CFGs define the same languages?
® Given a CFG, how can we tell whether it is ambiguous?

® Given an ambiguous CFG, how can we tell there exists a
non-ambiguous CFG accepting the same language?

® How can we tell whether the complement of a CFG is also
context-free?

® How can we tell whether the intersection of two CFGs is also
context-free?

0 Given two CFGs, how can we tell whether they have a word in
common?

@ Given a CFG, how can we tell whether there are any words it
does not generate?

Which of these questions are decidable?

1/13

Decidability

None of the prior questions are decidable!

There are no algorithms to answer any of these for any CFG

What Exists What Does Not Exist

® What is known ® Married bachelors

® What will be known Algorithms for Questions 1-7

® What might have been A good 5-cent cigar

known but nobody will ever * A funny joke from Professor
care enough to figure it out Killian

So what questions can we answer about Context-Free Grammars?

13

Three Fundamental Questions We Can Answer
|

©® Emptiness
Given a CFG, can we tell whether or not it generates any words
at all?

® Finiteness
Given a CFG, can we tell whether or not the language it
generates is finite of infinite?

® Membership

Given a CFG and a particular string of characters w, can we tell
whether or not w can be generated by the CFG?

13

Emptiness

g 7heoen

Given any CFG, there is an algorithm to determine whether or not it can
Zenerate any words at all.

® We can already show whether or not A can be produced
® Convert the grammar to CNF

® If there is a production of the form S — t, then t is a word in the
language

® If there are no such productions, then we propose the following;:

Step 1 For each Nonterminal N that has productions of the form N — t
where t is a terminal or string of terminals, replace N with t
across all productions

Step 2 Repeat Step 1 until either S is eliminated or no new terminals are
eliminated. If S has been eliminated, then the CFG produces

some words; if not, then it does not.
4/13

Emptiness

o Proof (Continued).

® The algorithm is finite since we will at most run Step 1 for every
unique non-terminal in the original CNF form of the grammar.

® The string of nonterminals that will eventually replace S is a
word that could be generated by the CFG.

® Some sequence of these “backwards replacements” (Step 1) will
eventually reach back to S if there is any word in the language.

Example

S — XY
X — AX | AA
Y — BY | BB
A—a
B— b

O

S — XY
X — AX
Y — BY | BB
A—a
B— b

5/13

Usage of a Nonterminal Production (Uselessness)
|

There is an algorithm to decide whether or not a given nonterminal X in
a CFG is ever used in the generation of words.

A Clever Trick

Just for a minute, reverse S and X in all the production rules in the
grammar. Use the “emptiness” algorithm to see whether we can
derive a working string involving X that leads to a word.

Definition

A nonterminal that cannot ever produce a string of terminals is
unproductive

6/13

Usage of a Nonterminal Production (Uselessness)

- Algorithm (Deciding if X is Useless)

@ Find all nonproductive nonterminals
® Purify the grammar by eliminating all productions from Step 1
® Paint all X’s blue

O If any nonterminal is the left side of a production with anything
blue on the right hand side, paint it (and any occurrences) blue

@ Repeat Step 4 until nothing blue is painted

0O If Sis blue, then X is a useful member of the CFG. If not, X is
useless

Example
S — ABa| bAZ | b

A — Xb | bZa
B — bAA

X — aZa | aaa
Z — ZAbA

7/13

Finiteness

Theorem

There is an algorithm to decide whether a given CFG generates an
infinite language or a finite language

There exists a procedure (next slide)

If any word in the language is long enough to apply the
pumping lemma to, we can produce an infinite sequence

If the language is infinite, then the pumping lemma must be
applicable

We must find a self-embedded nonterminal X in our algorithm

O

8/13

Finiteness

___] Algorithm

© Use the “usefulness” algorithm to determine which nonterminals
are useless. Eliminate all productions involving them

® Use the following algorithm to test each of the remaining
nonterminals, in term, to see whether they are self-embedded.
When a self-embedded one is discovered, stop. To test X:

@ Change all X’s on the left side of productions into the Russian
letter XK, but leave all X’s on the right hand side of productions
alone.

@ Paint all X’s blue.

@ If Y is any nonterminal that is the left side of any production
with some blue on the right, paint all Y’s blue.

@ Repeat step 2(iii) until nothing new is painted blue

@ If X is blue, then X is self-embedded; if not, then it is not.

©® If any nonterminal left in the grammar after step 1 is

self-embedded, the language generated is infinite. If not, then

the language is finite.
9/13

Finiteness
|

S — ABz| bAZ | b
A — Xb| bZA

B — bAA

X — aZa | bA | aaa
Z — ZAbA

10/13

Membership
__

Given a CFG and a string x in the same alphabet, we can decide whether
or not x can be generated by the CFG.

® Strategy created by Cocke, Kasami, and Younger (CKY)

® Qut of scope for this class (Compilers)

11/13

Homework 10a
|

@ Decide whether or not the following grammars generate any
words. Show work! (2 points each)

(i]
S — asa | bSb ®
S— XS
® X— YX|a
S XY | SY
Y = YY | XX
X—>SY|a
Y - SX|b
i) o
S— AB S—AB
A— BC|b A— BSB|CClal|b
B — CD B—)AA5|CC
C = DA C—SS|b|bb

D—a
12/13

Homework 10a
|

® Decide whether or not the following grammars generate finite or
infinite languages. Show work! (2 points each)

(i]
S—>XS|b ®
X—-YZ S — XY
Y — ab X— AA| XY | b
Z— XY A— BC
® B — AC
S— XY | bb C — BA
X =YX Y —>a
Y > XY | SS o
i) S—>SS|b
S— XY X—55|SX]|a

X > AA|YY | b .

